

## Sustainability – How It Pertains to Airport Pavement Construction

George Nowak, P.Eng.

2009 SWIFT Conference, Toronto, Canada September 14, 2009



#### **Presentation Outline**

- Sustainability for Pavement Construction
- Design Considerations
- Material Properties
- Recycling Opportunities
- > Construction Practices
- > Sustainability Procedures and Resources

#### **Defining Sustainability**

> Classical Definition:

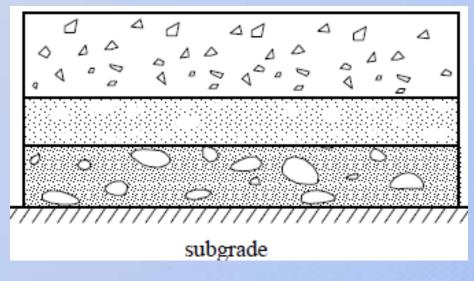
"Development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

UN Brundtland Commission, 1983

#### "Triple Bottom Line" (TBL) Definition

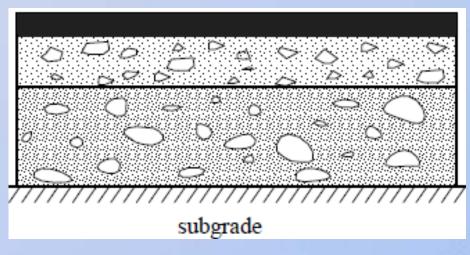
TBL more widely accepted approach to sustainability.
 (phrase coined by John Elkington, 1994)




#### **Design Considerations**

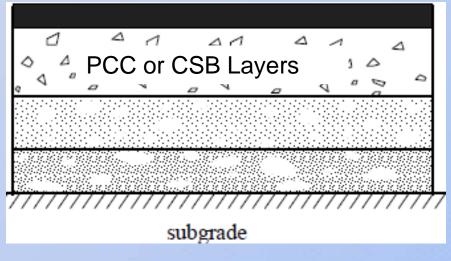
- Pavement Types New and Rehab
  - Concrete (rigid) and Asphalt (flexible)
- > Pavement Life
  - > Life considerations
- > Pavement Layers and Material Choices
  - PCC, HMA, Stabilized Layers, Granulars, Recycling
- Pavement Support
  - > Earthworks, Drainage, Landscaping

#### **Design Considerations**


- Pavement Types
  - > New Concrete (rigid)
  - New Asphalt (flexible)
  - Composite Rigid (Rehab) or New with Stabilized Base
  - > Composite Rigid
  - Composite Flexible (Rehab)
- What can be done in each layer of the pavement system?

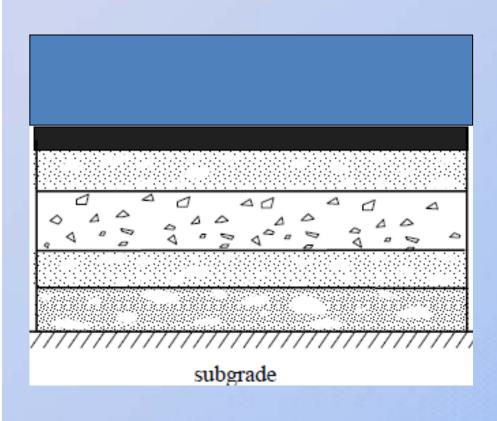
### **New Concrete (Rigid)**




- PCC surface design for 30-40 years not just 20 year life
- Stabilized Base (use recycled PCC, recycled CSB, recycled HMA, recycled granulars)
- Granular Base (recycled base, recycled HMA, recycled PCC, CSB.

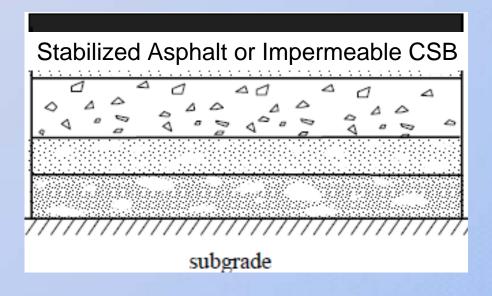
#### **New Asphalt (Flexible)**




- Design surface for longer life cycle – wider use of Polymer Modified Asphalt (PMA) and fuel resistant PMA.
- Use of "premium" aggregates in selected areas
- Use of "Stabilized"
   asphalt under premium
   HMA lower quality and
   RAP considerations.
- Lower layers as per rigid.

### **Composite Rigid**




- Depends on structural upgrade or surface condition if overlay on PCC (use of PMA)
- HMA on cement stabilized base allows use of RAP in lower layers or recycled PCC, CSB or granulars.
- Look at life cycle to beef up subgrade instead of granulars.

### **Composite Rigid - Whitetopping**



Reuse existing
 asphalt base for new
 concrete surface. No
 removals of existing –
 take advantage of
 existing stable
 structure.

#### **Composite Flexible**



▶ Depends on thickness of flexible layer on top of old PCC – can use premium HMA on top and lower stabilized layers with recycled HMA, PCC and CSB. Need to be careful to avoid trapped water with "sandwich" construction.

### Life Cycle Costing (LCC)

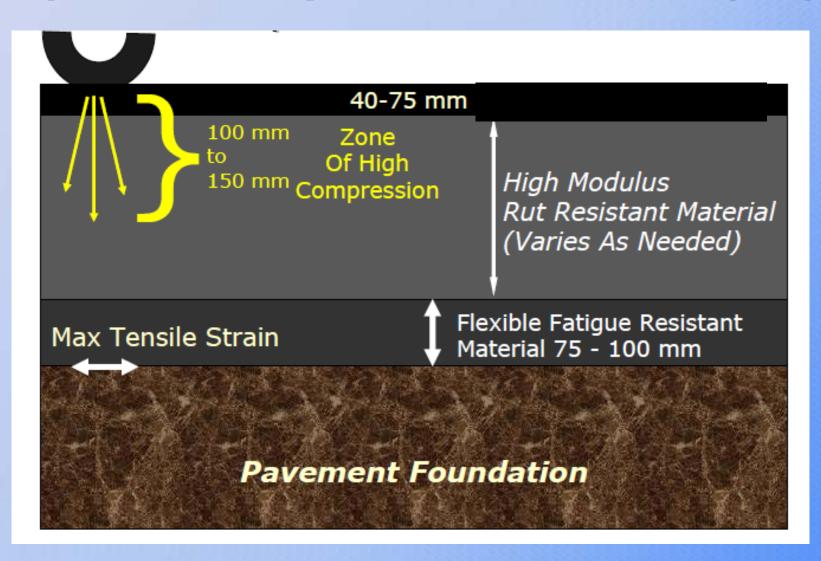
- Concrete and Asphalt which one is best?? What should be included in the LCC calculation and what is the time line?
- ➤ No decision here look but look at some of the issues that may increase the life of each and may and benefit the sustainability of the pavement structure.
- Increase sustainability by increasing life cycle.

#### **Increase Pavement Life Cycle**

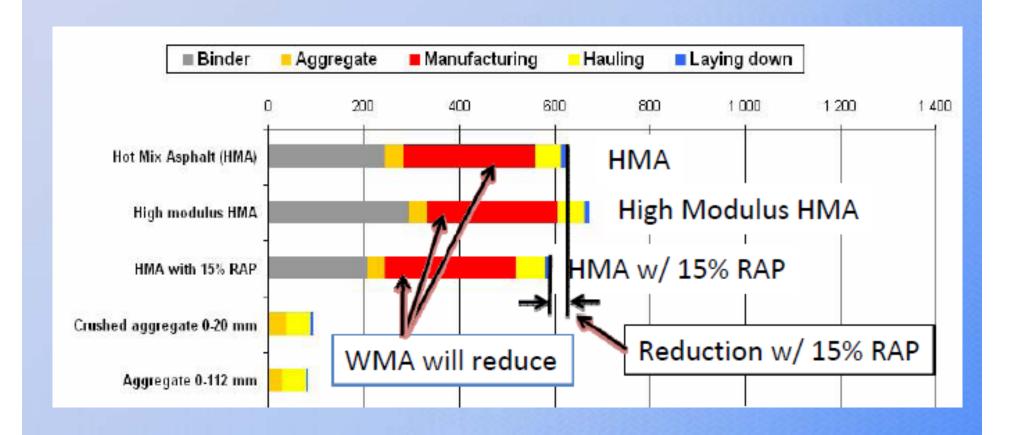
- > Concrete:
  - ➤ Increase Thickness generally only costs you about 50 mm extra thickness in a 380 mm PCC pavement to gain 10-15 years extra life (based on cumulative damage factor) when using FAA FAARFIELD finite element design methods.
  - > Use premium ancillary products

#### **Sustainability and Material Properties**

#### > Concrete


- Use of fly ash, blast furnace slag, and silica fume to improve properties, decrease costs, recycle materials and potentially decrease ASR.
- Thinner pavement structures where granular supply is a problem – but may not be an issue depending on minimum frost protection requirements.
- Reflectivity on runway surfaces.
- Stability of inset lighting systems.

#### **Increase Pavement Life Cycle**


#### Asphalt:

- Surface Durability (PMA, Rubberized, Premium surface course in selected areas to be HIR)
- Use of RAP in stabilized layers
- Marshall vs. Superpave
- Warm Mix Asphalt (not widely used on airports except at Logan Boston) – way of the future
- Asphalt (Perpetual Pavements airport pavements?)

#### Asphalt - Perpetual Pavement (PP)



#### **Asphalt Properties and Warm Mix**



#### Recycling Issues in Sustainability

- PCC meet 50mm minus granular base gradation
- ➤ HMA milled material or RAP watch bitumen content. Still not allowed in surface courses in most jurisdictions.
- > Stabilized Base same as PCC
- Granulars reuse as is subject to gradation.

## **YYZ Old T1 Demolition and Recycling**





#### YYZ Old T1 Demolition and Recycling Achievements

| Old T1 Demolition                                           |        |                        |
|-------------------------------------------------------------|--------|------------------------|
| Material Category ( <sup>19</sup> )<br>(Quantities rounded) | tonnes | Percentage<br>Recycled |
| Scrap Metal                                                 | 24000  | 100%                   |
| Concrete                                                    | 253000 | 100%                   |
| Asphalt                                                     | 10000  | 99%                    |
| Waste                                                       | 2900   | 95%                    |
| Brick Rubble                                                | 1500   | 100%                   |
| Drywall                                                     | 110    | 99%                    |
| Hazardous Materials<br>(Asbestos, Vermiculite Panels, etc)  | 2900   | 100%<br>Reduction      |

# Sustainable Practices for Pavement Support Systems Construction

- > Earthworks
- Grading and Topsoiling
- Drainage
- > Pavement Details

#### Sustainable Earthworks Issues

- Balanced design and best use of materials in pavement embankment
- Truck hauling and strict dust suppression (keep 600 mm of freeboard)
- Topsoil and seeding for sustainable design

   taxiway shoulders do not have to be
   asphalt if stable (YVR, YYC etc.). Keep
   asphalt on hard turns where jet blast an issue.

#### Tree Clearing and Mulching for Topsoil



#### **Grading and New Grass with Mulching**





### Silt Fencing and Runoff Prevention



Reuse of Milled HMA on Surface for Protection instead of imported granular



### **Cutting Joints in CSB under HMA**





Prevents reflective cracking in HMA surface when cement Contents are high

#### Standardize Manholes/Manufacture Yard



## **PCC** Doweling and Reinforcing



## **Use Spreaders For CSB and HMA**





#### **PCC Panel Reinforcing**



Consider Using
Preformed Joint Filler
To avoid sealing and
Resealing.



#### **Long Term Construction Management**

- Electronic As-builts Mandatory sustainability of records and instant access
- On-call crushing contractor for recycling allows stockpiling, grading and reuse of recycled materials on a continuous basis
- Engage Public Stakeholders on construction schedules and disruptions

#### **Long Term Construction Management**

- Engage contractors on best practices and lowest costs by presenting designs at 30% for inputs – expect biased views but input can be vetted to suit airport sustainability program.
- Airport Registration in ISO14001 leads to sustainability in design, specification and construction practice. Airport Specifications will ensure contractors buy into the airport ISO 14001 plan.

## Airport and Pavement Sustainability Websites

- http://www.acina.org/sustainability/sustainabilitylinks.html
- http://pavementinteractive.org/index.php?ti tle=Main\_Page
- http://www.cement.ca/
- http://www.warmmixasphalt.com/
- http://www.acpa.org/



